LeetCode Min Stack
Problem
Design a stack that supports push, pop, top, and retrieving the minimum element in constant time.
push(x) – Push element x onto stack. pop() – Removes the element on top of the stack. top() – Get the top element. getMin() – Retrieve the minimum element in the stack. Example:
1
2
3
4
5
6
7
8
MinStack minStack = new MinStack();
minStack.push(-2);
minStack.push(0);
minStack.push(-3);
minStack.getMin(); --> Returns -3.
minStack.pop();
minStack.top(); --> Returns 0.
minStack.getMin(); --> Returns -2.
即自定义一个栈,除了支持栈的基本操作外,支持一个额外的getMin返回当前栈内元素最小值的操作。
Python 实现
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
# Design a stack that supports push, pop, top, and retrieving the minimum element in constant time.
#
# push(x) -- Push element x onto stack.
# pop() -- Removes the element on top of the stack.
# top() -- Get the top element.
# getMin() -- Retrieve the minimum element in the stack.
# Example:
# MinStack minStack = new MinStack();
# minStack.push(-2);
# minStack.push(0);
# minStack.push(-3);
# minStack.getMin(); --> Returns -3.
# minStack.pop();
# minStack.top(); --> Returns 0.
# minStack.getMin(); --> Returns -2.
# author li.hzh
class MinStack:
__data = []
__min_list = []
def __init__(self):
"""
initialize your data structure here.
"""
self.__data = []
self.__min_list = []
def push(self, x):
"""
:type x: int
:rtype: void
"""
if not self.__data or x < self.__min_list[-1]:
self.__min_list.append(x)
else:
self.__min_list.append(self.__min_list[-1])
self.__data.append(x)
def pop(self):
"""
:rtype: void
"""
self.__data.pop()
self.__min_list.pop()
def top(self):
"""
:rtype: int
"""
return self.__data[-1]
def getMin(self):
"""
:rtype: int
"""
return self.__min_list[-1]
# Your MinStack object will be instantiated and called as such:
obj = MinStack()
obj.push(-1)
param_3 = obj.top()
param_4 = obj.getMin()
print(param_3)
print(param_4)
分析
单纯功能很简单,但是其实显然这题隐含了一个效率要求。如果,每次getMin都实时计算最小值的话,解法就超时了。因此,采用空间换时间的策略,用一个额外的数组保存每次操作后,栈内的最小值。该数组的最后一个元素,即为当前的最小值。
本文由作者按照 CC BY 4.0 进行授权